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When do we need learning in control?

Inadequate first-principles model

Parameter estimates inaccurate

Drift in system parameters

Unmodeled dynamics - Common in non-rigid bodies

Changes in the system

Possible solutions

A - Robust control with inaccurate model - too conservative

B - Offline model learning + Control - System Identification

C - Online model learning + Control

D - Reinforcement learning - Directly learn a control law
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B - Offline model learning and Control

Perturb the system with informative signals and identify parameters

Extensively studied for linear systems1

Non-linear system identification studied more recently2

Similar techniques currently being explored in model-based RL

Recent Important Progress

1 End-to-end guarantees for learning+LQR3

2 Practical advances in model-based RL for controlling robotic systems

1Lennart Ljung (2001). “System identification”. In: Wiley Encyclopedia of Electrical and Electronics Engineering.

2Johan Schoukens and Lennart Ljung (2019). “Nonlinear System Identification: A User-Oriented Road Map”. In: IEEE Control
Systems Magazine 39.6, pp. 28–99.

3Sarah Dean et al. (2019). “On the sample complexity of the linear quadratic regulator”. In: Foundations of Computational
Mathematics, pp. 1–47.
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D - Reinforcement Learning

Directly learn to control by parametrizing the policy or value function

Initially - model-free. Models coming into practice now.

Recent Important Progress

Policy optimization for LQR and mixed H-2/H-inf control4,5

4Maryam Fazel et al. (2018). “Global convergence of policy gradient methods for the linear quadratic regulator”. In: arXiv preprint
arXiv:1801.05039.

5Kaiqing Zhang, Bin Hu, and Tamer Basar (2019). “Policy optimization for H2 linear control with Hinf robustness guarantee: Implicit
regularization and global convergence”. In: arXiv preprint arXiv:1910.09496.
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C - Online Model Learning and Control

Refine parameters of the model online

Update control strategy on the refined model

Recent Important Progress

Regret bound for online prediction using spectral filtering6

Regret bound for online control with adversarial robustness7

Boosting for learning control systems8

Control with learning on the fly9

6Elad Hazan, Holden Lee, et al. (2018). “Spectral filtering for general linear dynamical systems”. In: Advances in NeurIPS,
pp. 4634–4643.

7Naman Agarwal, Brian Bullins, et al. (2019). “Online control with adversarial disturbances”. In: arXiv preprint arXiv:1902.08721.

8Naman Agarwal, Nataly Brukhim, et al. (2019). “Boosting for Dynamical Systems”. In: arXiv preprint arXiv:1906.08720.

9Charlie Fefferman et al. (2019). “Control with Learning on the Fly: First Toy Problems”. Seminar in ORFE, Princeton University.
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Role of Models

Model - description of the input-output behavior of the system

Advantages of Models

More sample efficient learning

Safer - consequence of sample efficiency

Can incorporate prior information

Disadvantages of Models

Inaccurate model - hinder exploring and finding better global
strategies
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Role of Models

Linear Models

Play a big role in control theory

Local linearization

Simple testbed for new methods and to prove guarantees

Power of machine learning

Non-linearities play a big role, e.g Neural Networks

Kernels and Feature maps incorporate prior information

Can machine learning provide a principled method of dealing with
difficult to model systems?
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Learning Linear State Space Models

xt+1 = Axt + But + wt (1)

yt = Cxt + Dut + nt (2)

xt ∈ Rn - state
ut ∈ Rm - input
yt ∈ Rk - output

wt ∈ Rn - disturbance
nt ∈ Rk - noise

A ∈ Rn×n,B ∈ Rn×m, C ∈ Rk×n, D ∈ Rk×m

The system is stable if ρ(A) < 1
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Method 1 - EM algorithm

Originally invented by Dempster,Laird and Rubin in 1977

First applied to linear systems by Shumway and Stoffer 1982

Most complete version of the method discussed in 199610

Pros

Very efficient and easy to implement

E step and M step are individually optimal in some sense

Cons

Both steps together will probably converge to a local optimum

10Zoubin Ghahramani and Geoffrey E Hinton (1996). Parameter estimation for linear dynamical systems. Tech. rep. Technical Report
CRG-TR-96-2, University of Toronto, Dept. of Computer Science.
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Method 1 - EM algorithm

Method for learning the state-space model directly
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Method 2 - Subspace identification

Started out in the 1960’s.

Pioneered by Van Overschee, De moor, Verhagen in the late 1980’s.

Robust SSID algorithm11 - culmination of all the ideas

Naive implementations do not work well

Pros: Works well if implemented with all bells and whistles

Cons: Batch algorithm, complicated, computationally expensive

11Peter Van Overschee and BL De Moor (2012). Subspace identification for linear systems: Theory—Implementation—Applications.
Springer Science & Business Media.
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Method 2 - Subspace identification

y r
t =


yt−r
yt−r+1

...
yt

 urt =


ut−r
ut−r+1

...
ut


Y =

[
y r

1 y r
2 . . . y r

N

]
U =

[
ur1 ur2 . . . urN

]
X =

[
x1 x2 . . . xN

]
The following relationship holds with Or - extended observability matrix,

Y = OrX + SrU + V︸︷︷︸
Noise terms

(3)

Or =


C
CA

...
CAr−1

 Sr =


D 0 . . . 0
CB D . . . 0

...
...

...
CAr−2B CAr−3B . . . CB
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Method 2 - Subspace identification

Define P⊥UT = I−UT
(
UUT

)−1
U, a projection operator

1 Form G = 1
N YP⊥UT ΦT

2 Select W1 and W2,form Ĝ ,then perform SVD

Ĝ = W1GW2 = USV T ≈ UdSdV
T
d (4)

Different choices of W1 and W2 - MOESP,N4SID,IVM,CVA

3 Select R - an arbitrary full rank matrix and form the observability
matrix OR = W−1

1 UdR

4 Estimate Â, Ĉ from the observability matrix

5 Estimate B̂, D̂ by linear regression
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Method 3 - EKF with augmented state

1 Kalman filter invented in 196012

2 Define hyperstate - unknown system matrices included in the state

3 Estimate both the state and the system matrices using EKF

xt+1 = Atxt + Btut + wt

At+1 = At + nA,t

Bt+1 = Bt + nB,t

Ct+1 = Ct + nC ,t

yt = Ctxt

Advantage: Can get uncertainty estimates. Disadvantage: Does not work
very well for systems that are not fully observable.

12Rudolph Kalman (1960). “E. 1960. A new approach to linear filtering and prediction problems”. In: Transactions of the
ASME–Journal of Basic Engineering 82, pp. 35–45.
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Learning Input-Output models

Learn a mapping from input to output without modeling the state

det (zI− A)︸ ︷︷ ︸
degree n polynomial

y = Cadj (zI− A) B︸ ︷︷ ︸
matrix of polynomials each of degree at most n-1

u (5)

Hints towards an autoregressive prediction model.
β0, β1, . . . βn - coefficients of the characteristic polynomial.

Cadj(zI− A)Bu = C det(zI− A) (zI− A)−1 Bu

= C

(
n∑

i=0

βiz
i

)
z−1

 ∞∑
j=0

Ajz−j

Bu
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Method 1 - ARX models

Let p = i − j .

Cadj(zI− A)Bu =
n∑

p=1

n∑
i=p

CβiA
i−pBzp−1u

+
0∑

p=−∞
A−pC

n∑
i=0

βiA
i

︸ ︷︷ ︸
0

Bzp−1u

To conclude,

n∑
j=0

βjyt+j =
n∑

p=1

Pput+p−1 (6)

ARX model - coefficients can be learnt using least squares
Input-output description without the state.
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Method 2 - Spectral Filtering

Recent work by Hazan et al.13

Input output mapping decomposed into a projection onto a space
spanned by the eigenvectors of a particular Hankel matrix

Eigenvectors are called “wave filters”

Prove regret bounds in the online case for identification

Translates to generalization bounds in the batch case

Main result of prior work - asymptotic consistency

13Elad Hazan, Karan Singh, and Cyril Zhang (2017). “Learning linear dynamical systems via spectral filtering”. In: Advances in
NeurIPS, pp. 6702–6712.
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Method 2 - Spectral Filtering

ARX model - βj are chosen to be the coefficients of the characteristic
polynomial,

n∑
i=0

βiyt−i =
n−1∑
j=0

Pjut−j (7)

In spectral filtering, choose βj to be coefficients of the polynomial with
roots given by the phases of the eigenvalues of A
Define approximation error

δt =
n∑

i=0

βiyt−i −
n−1∑
j=0

Pjut−j (8)
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Method 2 - Spectral Filtering

For a ∈ RT , define

a(ω) := (ajω
j)1≤j≤T

a(cos,θ) := (aj cos(jθ))1≤j≤T

a(sin,θ) := (aj sin(jθ))1≤j≤T

δt can be well approximated using the wave filters

δt ≈
W∑

w=1

k∑
h=1

M(w , h, :, :)σ
1
4

h

(
φ

(cos,2π w
W )

sf ,h ~ u
)

+ N(w , h, :, :)σ
1
4

h

(
φ

(sin,2π w
W )

sf ,h ~ u
)

(9)
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Numerical Comparison

Experimental Setup

System is time-invariant

Experiment 1 - Toy system fully observable m = 1, n = 3, k = 3

Experiment 2,3 - m = 3, n = 10, k = 5

B,C iid Gaussian

Inputs block gaussian signals and gaussian random noise

Signal level 0.5, Noise level 0.05.

Metrics

Prediction error

Runtime
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Experiment 1

Experiment 1 - Simple toy system. 3-dimensional single input fully
observable. Everything works!
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Experiment 2

Experiment 2 - A = diag([0.1, 0.2, . . . , 0.99]), m = 3, n = 10, k = 5,
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Experiment 3

Experiment 3 - A block diagonal matrix with 5 rotation matrices
m = 3, n = 10, k = 5
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Runtime and Model Order Comparison

Runtime and MSE for experiment 3 - true system order 10
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Figure: Performance vs Runtime comparison with different model orders

Athindran Ramesh Kumar L4C



29/62

Introduction
Online Learning for Model Identification

Online Control with Models
Avenues for further research

References

Learning State Space Models
Learning Input-Output Models
Experimental Demos

Conclusions from experiments

Trend similar over multiple seeds and system parameters.

Which optimization algorithm to use?

Small problems: RLS

Large problems: Only option GD with manually tuned step-size

Which identification algorithm to use?

ARX - very efficient and sufficiently accurate for most problems

High accuracy - SSID for small problems and SF for large problems

Input-output models if system order unknown

EKF - State-space control design methods available

EKF - Estimate of uncertainty useful for robust control
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How do we learn to drive?

Play it safe until we understand how
the car behaves.

Start with a conservative
controller
Transition to a aggressive
controller - based on current
model uncertainty
Will a convex combination of
controllers work?
Tune the weights
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Convex combination of controllers

For this section, assume state is fully measurable

Bad news

Spectral radius non-convex non-smooth

Stability not guaranteed

Good news - still a lot of structure in the problem for SISO systems

K3 = αK1 + (1− α)K2

L3(iω) = K3(iωI − A)−1B

= αL1 + (1− α)L2 (10)

p3(z) = det(zI − A) + K3adj(zI − A)B

= αp1(z) + (1− α)p2(z)

= αp1(z)

(
1 +

1− α
α

p2(z)

p1(z)

)
(11)
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Root Locus and Nyquist Plot

Figure: Nyquist plot of CVX control Figure: Root locus plot varying α
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Stability of time-varying convex combination

Controller switching
Dwell time - maintain stability switching between stabilizing controllers14

Relevant literature on convex combination

Conditions for stability of convex polytope of polynomials15

Condition for schur stability of convex polytope of polynomials16

Our approach
Gradient-based to constrain the controllers to be stabilizing

14José C Geromel and Patrizio Colaneri (2006). “Stability and stabilization of discrete time switched systems”. In: International Journal
of Control 79.07, pp. 719–728.

15Stanis law Bia las (2004). “A necessary and sufficient condition for stability of the convex combination of polynomials”. In: Control
and Cybernetics 33.4, pp. 589–597.

16Juergen E Ackermann and B Ross Barmish (1988). “Robust Schur stability of a polytope of polynomials”. In: IEEE transactions on
automatic control 33.10, pp. 984–986.
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Our Method

At ,Bt be the system at time t

Kt = (1− αt)K1 + αtK2

Estimates Aet ,Bet with 4A,t ,4B,t the errors in the estimates

vK , uK eigenvectors of (Aet − BetKt−1)T and Aet − BetKt−1 for the
eigenvalue with the maximum radius

ρt ≈
∣∣λ1(Aet − BetKt−1) + DA(λ1)[4At ] + DB(λ1)[4Bt ] +

dλ1

dα
(4αt)

∣∣
≈
∣∣λ1(Aet − BetKt−1) +

vH
K4AtuK
vH
K uK

+
vH
K4BtKt−1uK

vH
K uK

+
vH
K Bet(K2 − K1)uK

vH
K uK

(αt − αt−1)
∣∣

. ρt−1 + sK‖4A,t‖2 + sK‖Kt−1‖2‖4B,t‖2 + sα(αt − αt−1)
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Our Method

Therefore,

ρt ≤ ρt−1 + sK‖4A,t‖2 + sK‖Kt−1‖2‖4B,t‖2 + sα(αt − αt−1) (12)

where sK =
‖vH

K ‖‖uK‖
|vH

K uK || , sα = Re
(
λ̄K

|λK |
vH
K Bet(K2−K1)uK

vH
K uK

)
Let ‖4A,t‖2 ≤ δAt and ‖4B,t‖2 ≤ δBt

Compute an aggressive controller K1 (LQR) and a robust controller
K2 (H∞) at a lower frequency

At each time perform the following update (ηt - learning rate):

ρc = ρt−1 + sKδAt + sK‖Kt−1‖δBt
αt = αt−1 + ηtsα (ρd − ρc)

Kt = (1− αt)× K1 + αt × K2

Athindran Ramesh Kumar L4C
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Experiments

All the system parameters chosen randomly

Experiment 1 - n = 3 m = 1 k = 1

Artificially drift Aet from A0 to A where ‖A0 − A‖ = 0.6 slowly

Experiment 2 - n = 3, m = 1, k = 1

Introduce learning and use ‖Ae0 − A0‖ = 0.7

At is drifting slowly over time

Experiment 3 - n = 4, m = 2, k = 3

Introduce learning and use ‖Ae0 − A0‖ = 0.6

At is drifting slowly over time
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Experiment 1

Experiment 1 n = 3 m = 1 k = 1
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Figure: Left: Tracking of sinusoid with disturbance. Right: Tracking error
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Experiment 1

Experiment 1 n = 3 m = 1 k = 1
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Figure: Left: Spectral Radius of the three control strategies. Right: Percentage
of robust control
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Experiment 2

Experiment 2 - n = 3, m = 1, k = 1
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Figure: Left: Reference tracking of a sinusoid with online learning. No
disturbance added Right: Tracking error
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Experiment 3

Experiment 3 - n = 4, m = 2, k = 3
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Figure: Reference tracking of three sinusoids with disturbance added and online
learning
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Experimental Demos

Way Forward

Can we prove a guarantee that the optimization prevents escape out
of the space of stabilizing controllers?

Recent results on policy optimization for LQR1718

Can we transfer from a robust conservative controller to an
aggressive controller while constraining ourselves to the space of
stabilizing controllers using policy optimization?

Spectral radius - difficult choice of objective function

Investigate benefits and disadvantages.

17Kaiqing Zhang, Bin Hu, and Tamer Basar (2019). “Policy optimization for H2 linear control with Hinf robustness guarantee: Implicit
regularization and global convergence”. In: arXiv preprint arXiv:1910.09496.

18Maryam Fazel et al. (2018). “Global convergence of policy gradient methods for the linear quadratic regulator”. In: arXiv preprint
arXiv:1801.05039.
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More realistic systems

Actuator saturation

Order of the system unknown - can change with time

State not available for feedback - highly noisy measurements

Non-linear systems

Prove guarantees at least under some idealized assumptions
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One Application

Telescope Fiber Positioning

2304 cobra fibers in a telescope

Move all the fibers to destined locations quickly

Avoid collisions

Motors highly stochastic and non-linear

Figure: Telescope fiber positioning
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Zero-shot learning to control of the simple pendulum

Model non-linearity as a time-varying linearity.

Can stabilize the system in first attempt without an accurate model.

Figure: OpenAI Gym undamped Figure: Damping and disturbance
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Online Learning and Regret

Algorithm 1 Paradigm of online learning

1: while t ≤ T do
2: Observe xt
3: Make prediction ŷt(xt) ∈ Ŷt

4: Observe yt (can be adversarial)
5: Suffer loss lt(xt , yt , ŷt) (can be adversarial)
6: t=t+1
7: end while

Regret

T∑
t=1

(
lt(xt , yt , ŷt)− min

y∗∈Yt

lt(xt , yt , y
∗)

)
(13)
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Linear Quadratic Regulator (LQR)

Discrete-Time

min
u1,u2...

J = lim
T→∞

1

T

T∑
t=1

(
xTt Qxt + uTt Rut

)
(14)

Static linear feedback control law optimal

(A− BK)TP(A− BK)− P + Q + KTRK = 0

K = (R + BTPB)−1BTPA

Continous time

min
ut

J = lim
T→∞

1

T

∫ T

t=0

(
xTt Qxt + uTt Rut

)
dt (15)

(A− BK)TP + P(A− BK) + Q + KTRK = 0

K = R−1BTP
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Kalman Filter

Optimal estimate of state x given y and u

Pt1
t - covariance of xt conditioned on the first t1 inputs and outputs

Let Rw and Rn be the covariance of the Gaussian noise terms

xt−1
t = Ax t−1

t−1 + But

Pt−1
t = APt−1

t−1AT + Rw

Kt = Pt−1
t CT

(
CPt−1

t CT + Rn

)−1

xtt = xt−1
t + Kt

(
yt − Cx t−1

t −Dut
)

Pt
t = Pt−1

t −KtCPt−1
t

Athindran Ramesh Kumar L4C
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Expectation Maximization

Estimate parameters in the presence of underlying hidden state

Parameters represented by θ

Gaussian disturbance and noise

E step

Q(θ|θt) = Ext |y ;θt−1,u [logP(yt , xt ; θ, u)]

xt |y ; θt−1, u is Gaussian - estimated by the Kalman filter

M step

θt+1 = arg max
θ

Q(θ|θt)

θ appears linearly with gaussian noise... LSE

Athindran Ramesh Kumar L4C
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Subspace identification

Assume Â and Ĉ are known

ŷ (t|B,D) = Ĉ
(
zI− Â

)−1

Bu(t) + Du(t)

ŷ (t) = ψ(t)

[
Vec(B)
Vec(D)

]
How do we get the observability matrix?

Y = OrX + SrU + V︸︷︷︸
Noise terms

P⊥UT = I−UT
(
UUT

)−1
U

YP⊥UT = OrXP⊥UT + VP⊥UT
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Subspace identification - Estimating observability matrix

How do we get rid of the noise term? Try to correlate it with another
suitable matrix Φ.

Φ =
[
φs(1) φs(2) . . . φs(N)

]
G =

1

N
YP⊥UT ΦT = Or

1

N
XP⊥UT ΦT +

1

N
VP⊥UT ΦT = Or T̃N + VN

We want:

lim
N→∞

VN = 0

lim
N→∞

T̃N = T̃

Following choice of Φ works

φs(t) =



y(t − 1)
...

y(t − s1)
u(t − 1)

...
u(t − s2)
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Spectral Filtering - Symmetric dynamics matrix

Real eigenvalues

Initial state is assumed to be 0

w.lo.g A can be assumed to be diagonal

cl be the l th column of C and bl be the l th row of B

Let µ(α) =
[
αi−1(1− α)

]
be a T dimensional vector

yt − yt−1 = (CB−D)ut−1 +
T∑
i=1

C
(
Ai − Ai−1

)
But−i−1 + Dut (16)

= (CB−D)ut−1 +
T∑
i=1

C
d∑

l=1

(
αi
l − αi−1

l

)
ele

T
l But−i−1 + Dut (17)

= (CB−D)ut−1 +
d∑

l=1

(
clb

T
l µ(αl) ~ u

)
+ Dut (18)
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Spectral Filtering - Symmetric dynamics matrix

yt − yt−1 = (CB−D)ut−1 +
d∑

l=1

clb
T
l (µ(αl) ~ u) + Dut (19)

Find a basis for representation of the vectors with structure µ(α)
Define a matrix Z such that:

Zij =

∫ 1

α=0

µ(α)iµ(α)jdα =
2

(i + j)3 − (i + j)
(20)

Eigenvectors of Z denoted by φsf ,i

yt − yt−1 (21)

= (CB−D)ut−1 +
k∑

f =1

d∑
l=1

clb
T
l 〈µ(αl), φsf ,f 〉 (φsf ,f ~ u) + Dut (22)
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Spectral Filtering - General

Eigenvalues of A can be complex. According to the ARX model, if βj are
chosen to be the coefficients of the characteristic polynomial,

d∑
i=0

βiyt−i =
d∑

j=0

Pjut−j (23)

Instead, let us choose βj to be the coefficients of the polynomial with
roots given by the phases of the eigenvalues of A.
Define approximation error

δt =
d∑

i=0

βiyt−i −
d∑

j=0

Pjut−j (24)
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Spectral Filtering - General

For a ∈ RT , define a(ω) := (ajω
j)1≤j≤T ,

a(cos,θ) := (aj cos(jθ))1≤j≤T , a(sin,θ) := (aj sin(jθ))1≤j≤T
δt can be well approximated using the wave filters. Let ωl be the actual
phases of A. Phase Quantization.

δt ≈
d∑

l=1

k∑
h=1

M
′

l (h, :, :)σ
1
4

h

(
φ

(ωl )
sf ,h ~ u

)
(25)

≈
W∑

w=1

k∑
h=1

M(w , h, :, :)σ
1
4

h

(
φ

(e2πi w
W )

sf ,h ~ u

)
(26)

≈
W∑

w=1

k∑
h=1

M(w , h, :, :)σ
1
4

h

(
φ

(cos,2π w
W )

sf ,h ~ u
)

(27)

+ N(w , h, :, :)σ
1
4

h

(
φ

(sin,2π w
W )

sf ,h ~ u
)

(28)
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Policy Optimization

min
ut

J =
T∑
t=1

ct

xt+1 = f (xt , ut)

Parameterize policy as ut = πθ(xt)

Policy Gradient

θt+1 = θt −

 T∑
t=1

ct

T∑
t′=1

∇θ ln(πθ(xt′ ))


Natural Policy Gradient

θt+1 = θt − G−1
θ ∇θJ

where Gθ = E(∇θ lnπθ(xt)∇T
θ lnπθ(xt)) is the fisher information matrix
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Inputs in system ID experiment
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Figure: Sample input for the system identification experiment

Athindran Ramesh Kumar L4C


	Introduction
	Learning and Control - Different Paradigms
	Role of Models

	Online Learning for Model Identification
	Learning State Space Models
	Learning Input-Output Models
	Experimental Demos

	Online Control with Models
	Methods
	Experimental Demos

	Avenues for further research
	References

	fd@rm@1: 
	fd@rm@0: 


