### Online Learning for Control Systems

#### Athindran Ramesh Kumar

Princeton University Advisor: Prof. Peter Ramadge arkumar@princeton.edu

April 10, 2021

◆□▶ ◆母▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

### Overview

- 1 Introduction
  - Learning and Control Different Paradigms
  - Role of Models
- 2 Online Learning for Model Identification
  - Learning State Space Models
  - Learning Input-Output Models
  - Experimental Demos
- 3 Online Control with Models
  - Methods
  - Experimental Demos
- 4 Avenues for further research

イロト イポト イヨト イヨト 一臣

### Introduction

▲□▶▲舂▶▲≧▶▲≧▶ ― 差 … のへで

Online Learning for Model Identification Online Control with Models Avenues for further research References

Learning and Control - Different Paradigms Role of Models

### Learning and Control - Different Paradigms



Learning + Control



イロト イポト イヨト イヨト ヨー のくで

Online Learning for Model Identification Online Control with Models Avenues for further research References

Learning and Control - Different Paradigms Role of Models

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ≫ ○ < ○ 5/62</p>

### When do we need learning in control?

#### Inadequate first-principles model

- Parameter estimates inaccurate
- Drift in system parameters
- Unmodeled dynamics Common in non-rigid bodies
- Changes in the system

#### **Possible solutions**

- A Robust control with inaccurate model too conservative
- B Offline model learning + Control System Identification
- C Online model learning + Control
- D Reinforcement learning Directly learn a control law

Online Learning for Model Identification Online Control with Models

Learning and Control - Different Paradigms

### <u>B - Offline model learning and Control</u>

- Perturb the system with informative signals and identify parameters
- Extensively studied for linear systems<sup>1</sup>
- Non-linear system identification studied more recently<sup>2</sup>
- Similar techniques currently being explored in model-based RL

#### Recent Important Progress

- End-to-end guarantees for learning+LQR<sup>3</sup>
- Practical advances in model-based RL for controlling robotic systems

<sup>&</sup>lt;sup>1</sup>Lennart Liung (2001). "System identification". In: Wiley Encyclopedia of Electrical and Electronics Engineering.

<sup>&</sup>lt;sup>2</sup> Johan Schoukens and Lennart Liung (2019). "Nonlinear System Identification: A User-Oriented Road Map". In: IEEE Control Systems Magazine 39.6, pp. 28-99.

<sup>&</sup>lt;sup>3</sup>Sarah Dean et al. (2019), "On the sample complexity of the linear guadratic regulator", In: Foundations of Computational Mathematics, pp. 1-47.

Learning and Control - Different Paradigms

# D - Reinforcement Learning

- Directly learn to control by parametrizing the policy or value function
- Initially model-free. Models coming into practice now.

#### **Recent Important Progress**

Policy optimization for LQR and mixed H-2/H-inf control<sup>4</sup>,<sup>5</sup>



<sup>&</sup>lt;sup>4</sup> Maryam Fazel et al. (2018). "Global convergence of policy gradient methods for the linear quadratic regulator". In: arXiv preprint arXiv:1801.05039

<sup>&</sup>lt;sup>5</sup>Kaiqing Zhang, Bin Hu, and Tamer Basar (2019). "Policy optimization for H2 linear control with Hinf robustness guarantee: Implicit regularization and global convergence". In: arXiv preprint arXiv:1910.09496. Image: A matrix and a matrix

Online Learning for Model Identification Online Control with Models

Learning and Control - Different Paradigms

### C - Online Model Learning and Control

- Refine parameters of the model online
- Update control strategy on the refined model

#### **Recent Important Progress**

- Regret bound for online prediction using spectral filtering<sup>6</sup>
- Regret bound for online control with adversarial robustness<sup>7</sup>
- Boosting for learning control systems<sup>8</sup>
- Control with learning on the fly<sup>9</sup>

<sup>&</sup>lt;sup>6</sup>Elad Hazan. Holden Lee, et al. (2018). "Spectral filtering for general linear dynamical systems". In: Advances in NeurIPS, pp. 4634-4643.

<sup>&</sup>lt;sup>7</sup>Naman Agarwal, Brian Bullins, et al. (2019). "Online control with adversarial disturbances". In: arXiv preprint arXiv:1902.08721.

<sup>&</sup>lt;sup>8</sup>Naman Agarwal, Nataly Brukhim, et al. (2019). "Boosting for Dynamical Systems". In: arXiv preprint arXiv:1906.08720.

<sup>&</sup>lt;sup>9</sup>Charlie Fefferman et al. (2019). "Control with Learning on the Fly: First Toy Problems"). Semiflar in ORFE: Princeton University. 9 9 9

Online Learning for Model Identification Online Control with Models References

Role of Models

### Role of Models

Model - description of the input-output behavior of the system

#### **Advantages of Models**

- More sample efficient learning
- Safer consequence of sample efficiency
- Can incorporate prior information

#### **Disadvantages of Models**

Inaccurate model - hinder exploring and finding better global strategies

Online Learning for Model Identification Online Control with Models References

Role of Models

### Role of Models

### Linear Models

- Play a big role in control theory
- Local linearization
- Simple testbed for new methods and to prove guarantees

#### Power of machine learning

- Non-linearities play a big role, e.g Neural Networks
- Kernels and Feature maps incorporate prior information

Can machine learning provide a principled method of dealing with difficult to model systems?

イロト イ部ト イヨト イヨト 二日

Online Learning for Model Identification

### Online Learning for Model Identification

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

### Learning Linear State Space Models

$$x_{t+1} = \mathbf{A}x_t + \mathbf{B}u_t + w_t \tag{1}$$
  

$$y_t = \mathbf{C}x_t + \mathbf{D}u_t + n_t \tag{2}$$



 $\mathbf{A} \in \mathbb{R}^{n \times n}$ ,  $\mathbf{B} \in \mathbb{R}^{n \times m}$ ,  $\mathbf{C} \in \mathbb{R}^{k \times n}$ ,  $\mathbf{D} \in \mathbb{R}^{k \times m}$ The system is stable if  $\rho(\mathbf{A}) < 1$ 

Learning State Space Models Learning Input-Output Models Experimental Demos

# Method 1 - EM algorithm

- Originally invented by Dempster, Laird and Rubin in 1977
- First applied to linear systems by Shumway and Stoffer 1982
- Most complete version of the method discussed in 1996<sup>10</sup>

#### Pros

- Very efficient and easy to implement
- E step and M step are individually optimal in some sense

#### Cons

Both steps together will probably converge to a local optimum

<sup>&</sup>lt;sup>10</sup>Zoubin Ghahramani and Geoffrey E Hinton (1996). Parameter estimation for linear dynamical systems. Tech. rep. Technical Report CRG-TR-96-2, University of Toronto, Dept. of Computer Science.

Learning State Space Models Learning Input-Output Models Experimental Demos

### Method 1 - EM algorithm

Method for learning the state-space model directly



Online Learning for Model Identification Online Control with Models Avenues for further research

Learning State Space Models

### Method 2 - Subspace identification

- Started out in the 1960's.
- Pioneered by Van Overschee, De moor, Verhagen in the late 1980's.
- Robust SSID algorithm<sup>11</sup> culmination of all the ideas
- Naive implementations do not work well
- Pros: Works well if implemented with all bells and whistles
- Cons: Batch algorithm, complicated, computationally expensive

<sup>11</sup> Peter Van Overschee and BL De Moor (2012). Subspace identification for linear systems: Theory-Implementation-Applications Springer Science & Business Media. Image: Ima

Learning State Space Models Learning Input-Output Models Experimental Demos

### Method 2 - Subspace identification

The following relationship holds with  $\mathcal{O}_r$  - extended observability matrix,

$$\mathbf{Y} = \mathcal{O}_r \mathbf{X} + S_r \mathbf{U} + \underbrace{\mathbf{V}}_{\text{Noise terms}}$$
(3)  
$$\mathcal{O}_r = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{r-1} \end{bmatrix} \qquad S_r = \begin{bmatrix} D & 0 & \dots & 0 \\ CB & D & \dots & 0 \\ \vdots & \vdots & & \vdots \\ CA^{r-2}B & CA^{r-3}B & \dots & CB \end{bmatrix}$$

Online Learning for Model Identification Online Control with Models Avenues for further research

Learning State Space Models

### Method 2 - Subspace identification

Define 
$$\mathbb{P}_{\mathbf{U}^{T}}^{\perp} = \mathbf{I} - \mathbf{U}^{\mathsf{T}} (\mathbf{U}\mathbf{U}^{\mathsf{T}})^{-1} \mathbf{U}$$
, a projection operator

- **1** Form  $G = \frac{1}{N} \mathbf{Y} \mathbb{P}_{\mathbf{H}^{\mathsf{T}}}^{\mathsf{T}} \Phi'$
- **2** Select  $W_1$  and  $W_2$ , form  $\hat{G}$ , then perform SVD

$$\hat{G} = W_1 G W_2 = U S V^T \approx U_d S_d V_d^T \tag{4}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● の Q @

Different choices of  $W_1$  and  $W_2$  - MOESP, N4SID, IVM, CVA

- Select R an arbitrary full rank matrix and form the observability 3 matrix  $\mathcal{O}_R = W_1^{-1} U_d R$
- 4 Estimate  $\hat{A}, \hat{C}$  from the observability matrix
- **5** Estimate  $\hat{B}, \hat{D}$  by linear regression

Learning State Space Models Learning Input-Output Models Experimental Demos

### Method 3 - EKF with augmented state

- Kalman filter invented in 1960<sup>12</sup>
- 2 Define hyperstate unknown system matrices included in the state
- 3 Estimate both the state and the system matrices using EKF

$$x_{t+1} = A_t x_t + B_t u_t + w_t$$
$$A_{t+1} = A_t + n_{A,t}$$
$$B_{t+1} = B_t + n_{B,t}$$
$$C_{t+1} = C_t + n_{C,t}$$
$$y_t = C_t x_t$$

Advantage: Can get uncertainty estimates. Disadvantage: Does not work very well for systems that are not fully observable.

Learning Input-Output Models

### Learning Input-Output models

Learn a mapping from input to output without modeling the state

$$\underbrace{\det (\mathbf{zI} - \mathbf{A})}_{\text{degree n polynomial}} y = \underbrace{\operatorname{Cadj} (\mathbf{zI} - \mathbf{A}) \mathbf{B}}_{\text{matrix of polynomials each of degree at most n-1}} u \quad (5)$$

Hints towards an autoregressive prediction model.  $\beta_0, \beta_1, \dots, \beta_n$  - coefficients of the characteristic polynomial.

$$\begin{aligned} \mathbf{C} \mathsf{adj}(\mathbf{z}\mathbf{I} - \mathbf{A})\mathbf{B}u &= \mathbf{C} \det(\mathbf{z}\mathbf{I} - \mathbf{A}) (\mathbf{z}\mathbf{I} - \mathbf{A})^{-1} \mathbf{B}u \\ &= \mathbf{C} \left(\sum_{i=0}^{n} \beta_i z^i\right) z^{-1} \left(\sum_{j=0}^{\infty} \mathbf{A}^j \mathbf{z}^{-j}\right) \mathbf{B}u \end{aligned}$$

Learning Input-Output Models

### Method 1 - ARX models

Let p = i - j.

$$Cadj(zI - A)Bu = \sum_{p=1}^{n} \sum_{i=p}^{n} C\beta_i A^{i-p} Bz^{p-1} u$$
$$+ \sum_{p=-\infty}^{0} A^{-p} C \underbrace{\sum_{i=0}^{n} \beta_i A^i}_{0} Bz^{p-1} u$$

To conclude,

$$\sum_{j=0}^{n} \beta_j y_{t+j} = \sum_{p=1}^{n} \mathbf{P}_p u_{t+p-1}$$
(6)

ARX model - coefficients can be learnt using least squares Input-output description without the state. <□▶<⑦▶<≧▶<≧▶<≧▶ 20/62

Learning State Space Models Learning Input-Output Models Experimental Demos

## Method 2 - Spectral Filtering

- Recent work by Hazan et al.<sup>13</sup>
- Input output mapping decomposed into a projection onto a space spanned by the eigenvectors of a particular Hankel matrix
- Eigenvectors are called "wave filters"
- Prove regret bounds in the online case for identification
- Translates to generalization bounds in the batch case
- Main result of prior work asymptotic consistency

13 Elad Hazan, Karan Singh, and Cyril Zhang (2017). "Learning linear dynamical systems via spectral filtering". In: Advances in NeurIPS, pp. 6702–6712.

Learning State Space Models Learning Input-Output Models Experimental Demos

### Method 2 - Spectral Filtering

ARX model -  $\beta_j$  are chosen to be the coefficients of the characteristic polynomial,

$$\sum_{i=0}^{n} \beta_{i} y_{t-i} = \sum_{j=0}^{n-1} \mathbf{P}_{j} u_{t-j}$$
(7)

In spectral filtering, choose  $\beta_j$  to be coefficients of the polynomial with roots given by the phases of the eigenvalues of **A** Define approximation error

$$\delta_t = \sum_{i=0}^n \beta_i y_{t-i} - \sum_{j=0}^{n-1} \mathbf{P}_j u_{t-j}$$
(8)

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 三臣…

Learning State Space Models Learning Input-Output Models Experimental Demos

### Method 2 - Spectral Filtering

For  $\mathbf{a} \in \mathbb{R}^{T}$ , define

$$\begin{aligned} a^{(\omega)} &:= (a_j \omega^j)_{1 \le j \le T} \\ a^{(\cos,\theta)} &:= (a_j \cos(j\theta))_{1 \le j \le T} \\ a^{(\sin,\theta)} &:= (a_j \sin(j\theta))_{1 \le j \le T} \end{aligned}$$

 $\delta_t$  can be well approximated using the wave filters

$$\delta_{t} \approx \sum_{w=1}^{W} \sum_{h=1}^{k} \mathcal{M}(w, h, :, :) \sigma_{h}^{\frac{1}{4}} \left( \phi_{sf, h}^{(\cos, 2\pi \frac{w}{W})} \circledast u \right) \\ + \mathcal{N}(w, h, :, :) \sigma_{h}^{\frac{1}{4}} \left( \phi_{sf, h}^{(\sin, 2\pi \frac{w}{W})} \circledast u \right)$$
(9)

Online Learning for Model Identification Online Control with Models Avenues for further research

Experimental Demos

### Numerical Comparison

### **Experimental Setup**

- System is time-invariant
- Experiment 1 Toy system fully observable m = 1, n = 3, k = 3
- Experiment 2,3 m = 3, n = 10, k = 5
- B, C iid Gaussian
- Inputs block gaussian signals and gaussian random noise
- Signal level 0.5, Noise level 0.05.

### Metrics

- Prediction error
- Runtime

Learning State Space Models Learning Input-Output Models Experimental Demos

### Experiment 1

Experiment 1 - Simple toy system. 3-dimensional single input fully observable. Everything works!



Athindran Ramesh Kumar

Learning State Space Models Learning Input-Output Models Experimental Demos

### Experiment 2

### Experiment 2 - $\mathbf{A} = \text{diag}([0.1, 0.2, \dots, 0.99]), m = 3, n = 10, k = 5,$



Athindran Ramesh Kumar

L4C

Learning State Space Models Learning Input-Output Models Experimental Demos

### Experiment 3

# Experiment 3 - **A** block diagonal matrix with 5 rotation matrices m = 3, n = 10, k = 5



Athindran Ramesh Kumar

Experimental Demos

### Runtime and Model Order Comparison

#### Runtime and MSE for experiment 3 - true system order 10



Figure: Performance vs Runtime comparison with different model orders

イロト イポト イヨト イヨト

臣

Learning State Space Models Learning Input-Output Models Experimental Demos

### Conclusions from experiments

Trend similar over multiple seeds and system parameters.

### Which optimization algorithm to use?

- Small problems: RLS
- Large problems: Only option GD with manually tuned step-size

### Which identification algorithm to use?

- ARX very efficient and sufficiently accurate for most problems
- High accuracy SSID for small problems and SF for large problems
- Input-output models if system order unknown
- EKF State-space control design methods available
- EKF Estimate of uncertainty useful for robust control

Online Control with Models

### **Online Control with Models**

Online Learning for Model Identification Online Control with Models Avenues for further research

### How do we learn to drive?



Play it safe until we understand how the car behaves.

- Start with a conservative controller
- Transition to a aggressive controller - based on current model uncertainty
- Will a convex combination of controllers work?

イロト イポト イヨト イヨト

크

Tune the weights

Methods Experimental Demos

### Convex combination of controllers

For this section, assume state is fully measurable

### Bad news

- Spectral radius non-convex non-smooth
- Stability not guaranteed

Good news - still a lot of structure in the problem for SISO systems

$$K_{3} = \alpha K_{1} + (1 - \alpha) K_{2}$$

$$L_{3}(i\omega) = K_{3}(i\omega I - A)^{-1}B$$

$$= \alpha L_{1} + (1 - \alpha) L_{2}$$

$$p_{3}(z) = \det(zI - A) + K_{3} \operatorname{adj}(zI - A)B$$

$$= \alpha p_{1}(z) + (1 - \alpha) p_{2}(z)$$

$$= \alpha p_{1}(z) \left(1 + \frac{1 - \alpha}{\alpha} \frac{p_{2}(z)}{p_{1}(z)}\right)$$
(11)

### Root Locus and Nyquist Plot



Figure: Nyquist plot of CVX control

Figure: Root locus plot varying  $\alpha$ 

æ

### Stability of time-varying convex combination

### **Controller switching**

Dwell time - maintain stability switching between stabilizing controllers<sup>14</sup>

#### Relevant literature on convex combination

- Conditions for stability of convex polytope of polynomials<sup>15</sup>
- Condition for schur stability of convex polytope of polynomials<sup>16</sup>

#### Our approach

Gradient-based to constrain the controllers to be stabilizing

<sup>14</sup> José C Geromel and Patrizio Colaneri (2006). "Stability and stabilization of discrete time switched systems". In: International Journal of Control 79.07, pp. 719-728.

<sup>&</sup>lt;sup>15</sup>Stanisław Białas (2004). "A necessary and sufficient condition for stability of the convex combination of polynomials". In: Control and Cybernetics 33.4, pp. 589-597.

<sup>&</sup>lt;sup>16</sup> Juergen E Ackermann and B Ross Barmish (1988), "Robust Schur stability of a polytope of polynomials". In: *IEEE transactions on* automatic control 33.10, pp. 984-986.

Methods Experimental Demos

### Our Method

- $A_t, B_t$  be the system at time t
- $K_t = (1 \alpha_t)K_1 + \alpha_t K_2$
- Estimates  $A_{et}, B_{et}$  with  $\triangle_{A,t}, \triangle_{B,t}$  the errors in the estimates
- $v_K$ ,  $u_K$  eigenvectors of  $(A_{et} B_{et}K_{t-1})^T$  and  $A_{et} B_{et}K_{t-1}$  for the eigenvalue with the maximum radius

$$\begin{split} \rho_t &\approx \left|\lambda_1 (A_{et} - B_{et} K_{t-1}) + D_A (\lambda_1) [\triangle_{At}] + D_B (\lambda_1) [\triangle_{Bt}] + \frac{d\lambda_1}{d\alpha} (\triangle \alpha_t) \right| \\ &\approx \left|\lambda_1 (A_{et} - B_{et} K_{t-1}) + \frac{v_K^H \triangle_{At} u_K}{v_K^H u_K} + \frac{v_K^H \triangle_{Bt} K_{t-1} u_K}{v_K^H u_K} \right. \\ &+ \frac{v_K^H B_{et} (K_2 - K_1) u_K}{v_K^H u_K} \left(\alpha_t - \alpha_{t-1}\right) \right| \\ &\lesssim \rho_{t-1} + s_K \|\triangle_{A,t}\|_2 + s_K \|K_{t-1}\|_2 \|\triangle_{B,t}\|_2 + s_\alpha (\alpha_t - \alpha_{t-1}) \end{split}$$

Methods Experimental Demos

### Our Method

Therefore,

$$\rho_t \le \rho_{t-1} + s_{\mathcal{K}} \| \triangle_{A,t} \|_2 + s_{\mathcal{K}} \| \mathcal{K}_{t-1} \|_2 \| \triangle_{B,t} \|_2 + s_\alpha (\alpha_t - \alpha_{t-1})$$
(12)

where 
$$s_{\mathcal{K}} = \frac{\|v_{\mathcal{K}}^{H}\|\|u_{\mathcal{K}}\|}{|v_{\mathcal{K}}^{H}u_{\mathcal{K}}||}, s_{\alpha} = \mathsf{Re}\left(\frac{\bar{\lambda}_{\mathcal{K}}}{|\lambda_{\mathcal{K}}|}\frac{v_{\mathcal{K}}^{H}B_{et}(\mathcal{K}_{2}-\mathcal{K}_{1})u_{\mathcal{K}}}{v_{\mathcal{K}}^{H}u_{\mathcal{K}}}\right)$$

Let  $\| riangle_{A,t} \|_2 \le \delta_{At}$  and  $\| riangle_{B,t} \|_2 \le \delta_{Bt}$ 

- Compute an aggressive controller  $K_1$  (LQR) and a robust controller  $K_2$  ( $H^{\infty}$ ) at a lower frequency
- At each time perform the following update ( $\eta_t$  learning rate):

$$\rho_{c} = \rho_{t-1} + s_{K}\delta_{At} + s_{K} ||K_{t-1}||\delta_{Bt}$$
  

$$\alpha_{t} = \alpha_{t-1} + \eta_{t}s_{\alpha} (\rho_{d} - \rho_{c})$$
  

$$K_{t} = (1 - \alpha_{t}) \times K_{1} + \alpha_{t} \times K_{2}$$

36/62

Experimental Demos

### Experiments

All the system parameters chosen randomly **Experiment 1** - n = 3 m = 1 k = 1

• Artificially drift  $A_{et}$  from  $A_0$  to A where  $||A_0 - A|| = 0.6$  slowly

**Experiment 2** - n = 3, m = 1, k = 1

- Introduce learning and use  $||A_{e0} A_0|| = 0.7$
- A<sub>t</sub> is drifting slowly over time

**Experiment 3** - n = 4, m = 2, k = 3

- Introduce learning and use  $||A_{e0} A_0|| = 0.6$
- A<sub>t</sub> is drifting slowly over time

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Methods Experimental Demos

### Experiment 1

#### **Experiment 1** n = 3 m = 1 k = 1



Figure: Left: Tracking of sinusoid with disturbance. Right: Tracking error

・ロト ・ 四ト ・ 国ト ・ 国ト - 三日 -

の< へ 38/62</p>

Experimental Demos

### Experiment 1

#### **Experiment 1** n = 3 m = 1 k = 1



Figure: Left: Spectral Radius of the three control strategies. Right: Percentage of robust control 

39/62

Methods Experimental Demos

### Experiment 2

#### **Experiment 2** - n = 3, m = 1, k = 1



Figure: Left: Reference tracking of a sinusoid with online learning. No disturbance added Right: Tracking error

Athindran Ramesh Kumar

L4C

の<? 40/62</p>

Methods Experimental Demos

### Experiment 3

#### **Experiment 3** - n = 4, m = 2, k = 3



Figure: Reference tracking of three sinusoids with disturbance added and online learning

41/62

Methods Experimental Demos

### Way Forward

- Can we prove a guarantee that the optimization prevents escape out of the space of stabilizing controllers?
- Recent results on policy optimization for LQR<sup>1718</sup>
- Can we transfer from a robust conservative controller to an aggressive controller while constraining ourselves to the space of stabilizing controllers using policy optimization?
- Spectral radius difficult choice of objective function
- Investigate benefits and disadvantages.

<sup>&</sup>lt;sup>17</sup> Kaiqing Zhang, Bin Hu, and Tamer Basar (2019). "Policy optimization for H2 linear control with Hinf robustness guarantee: Implicit regularization and global convergence". In: arXiv preprint arXiv:1910.09496.

Avenues for further research

### Avenues for further research

### More realistic systems

- Actuator saturation
- Order of the system unknown can change with time
- State not available for feedback highly noisy measurements
- Non-linear systems
- Prove guarantees at least under some idealized assumptions

イロト イ部ト イヨト イヨト 二日

44/62

Online Learning for Model Identification Online Control with Models Avenues for further research

### One Application

### **Telescope Fiber Positioning**

- 2304 cobra fibers in a telescope
- Move all the fibers to destined locations quickly
- Avoid collisions
- Motors highly stochastic and non-linear





45/62

Figure: Telescope fiber positioning

## Zero-shot learning to control of the simple pendulum

- Model non-linearity as a time-varying linearity.
- Can stabilize the system in first attempt without an accurate model.



46/62

### References I

- Ackermann, Juergen E and B Ross Barmish (1988). "Robust Schur stability of a polytope of polynomials". In: IEEE transactions on automatic control 33.10, pp. 984–986.
- Agarwal, Naman, Nataly Brukhim, et al. (2019). "Boosting for Dynamical Systems". In: *arXiv preprint arXiv:1906.08720*.
- Agarwal, Naman, Brian Bullins, et al. (2019). "Online control with adversarial disturbances". In: *arXiv preprint arXiv:1902.08721*.
- Białas, Stanisław (2004). "A necessary and sufficient condition for stability of the convex combination of polynomials". In: Control and Cybernetics 33.4, pp. 589–597.
- Dean, Sarah et al. (2019). "On the sample complexity of the linear quadratic regulator". In: *Foundations of Computational Mathematics*, pp. 1–47.

イロト イポト イヨト イヨト 一座

### References II



linear dynamical systems". In: Advances in NeurIPS, pp. 4634-4643.

イロト イポト イヨト イヨト

### References III

- Hazan, Elad, Karan Singh, and Cyril Zhang (2017). "Learning linear dynamical systems via spectral filtering". In: Advances in NeurIPS, pp. 6702-6712.
- Kalman, Rudolph (1960). "E. 1960. A new approach to linear filtering and prediction problems". In: Transactions of the ASME-Journal of Basic Engineering 82, pp. 35–45.
- Ljung, Lennart (2001). "System identification". In: Wiley Encyclopedia of Electrical and Electronics Engineering.
- Schoukens, Johan and Lennart Ljung (2019). "Nonlinear System Identification: A User-Oriented Road Map". In: IEEE Control Systems Magazine 39.6, pp. 28–99.
  - Shumway, Robert H and David S Stoffer (1982). "An approach to time series smoothing and forecasting using the EM algorithm". In: Journal of time series analysis 3.4, pp. 253–264.

かへで 49/62

### References IV



Van Overschee, Peter and BL De Moor (2012). Subspace identification for linear systems: Theory—Implementation—Applications. Springer Science & Business Media.

Zhang, Kaiqing, Bin Hu, and Tamer Basar (2019). "Policy optimization for H2 linear control with Hinf robustness guarantee: Implicit regularization and global convergence". In: arXiv preprint arXiv:1910.09496

### Online Learning and Regret

Algorithm 1 Paradigm of online learning

- 1: while  $t \leq T$  do
- 2: Observe  $x_t$
- 3: Make prediction  $\hat{y}_t(x_t) \in \hat{Y}_t$
- 4: Observe  $y_t$  (can be adversarial)
- 5: Suffer loss  $I_t(x_t, y_t, \hat{y}_t)$  (can be adversarial)
- 6: t=t+1
- 7: end while

#### Regret

$$\sum_{t=1}^{T} \left( l_t(x_t, y_t, \hat{y}_t) - \min_{y^* \in Y_t} l_t(x_t, y_t, y^*) \right)$$
(13)

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト 三 臣

# Linear Quadratic Regulator (LQR)

**Discrete-Time** 

$$\min_{u_1, u_2 \dots} J = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \left( x_t^T \mathbf{Q} x_t + u_t^T \mathbf{R} u_t \right)$$
(14)

Static linear feedback control law optimal

$$(\mathbf{A} - \mathbf{B}\mathbf{K})^T \mathbf{P}(\mathbf{A} - \mathbf{B}\mathbf{K}) - \mathbf{P} + \mathbf{Q} + \mathbf{K}^T \mathbf{R}\mathbf{K} = 0$$
  
 $\mathbf{K} = (\mathbf{R} + \mathbf{B}^T \mathbf{P} \mathbf{B})^{-1} \mathbf{B}^T \mathbf{P} \mathbf{A}$ 

**Continous time** 

$$\min_{u_t} J = \lim_{T \to \infty} \frac{1}{T} \int_{t=0}^{T} \left( x_t^T \mathbf{Q} x_t + u_t^T \mathbf{R} u_t \right) dt$$
(15)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ① ○ ○ ○

$$(\mathbf{A} - \mathbf{B}\mathbf{K})^T \mathbf{P} + \mathbf{P}(\mathbf{A} - \mathbf{B}\mathbf{K}) + \mathbf{Q} + \mathbf{K}^T \mathbf{R}\mathbf{K} = 0$$
  
 $\mathbf{K} = \mathbf{R}^{-1} \mathbf{B}^T \mathbf{P}$ 

### Kalman Filter

- Optimal estimate of state x given y and u
- **P** $_{t}^{t_{1}}$  covariance of **x**<sub>t</sub> conditioned on the first  $t_{1}$  inputs and outputs
- Let  $R_w$  and  $R_n$  be the covariance of the Gaussian noise terms

$$\begin{aligned} \mathbf{x}_{t}^{t-1} &= \mathbf{A} \mathbf{x}_{t-1}^{t-1} + \mathbf{B} u_{t} \\ \mathbf{P}_{t}^{t-1} &= \mathbf{A} \mathbf{P}_{t-1}^{t-1} \mathbf{A}^{T} + R_{w} \\ \mathbf{K}_{t} &= \mathbf{P}_{t}^{t-1} \mathbf{C}^{T} \left( \mathbf{C} \mathbf{P}_{t}^{t-1} \mathbf{C}^{T} + \mathbf{R}_{n} \right)^{-1} \\ \mathbf{x}_{t}^{t} &= \mathbf{x}_{t}^{t-1} + \mathbf{K}_{t} \left( \mathbf{y}_{t} - \mathbf{C} \mathbf{x}_{t}^{t-1} - \mathbf{D} u_{t} \right) \\ \mathbf{P}_{t}^{t} &= \mathbf{P}_{t}^{t-1} - \mathbf{K}_{t} \mathbf{C} \mathbf{P}_{t}^{t-1} \end{aligned}$$

### Expectation Maximization

- Estimate parameters in the presence of underlying hidden state
- $\blacksquare$  Parameters represented by  $\theta$
- Gaussian disturbance and noise
- E step

$$Q(\theta|\theta^t) = \mathbb{E}_{x_t|y;\theta_{t-1},u} \left[ \log P(y_t, x_t; \theta, u) \right]$$

 $x_t|y; \theta_{t-1}, u$  is Gaussian - estimated by the Kalman filter **M step** 

$$\theta_{t+1} = \arg \max_{\theta} Q(\theta|\theta^t)$$

 $\boldsymbol{\theta}$  appears linearly with gaussian noise... LSE

### Subspace identification

Assume  $\hat{\boldsymbol{A}}$  and  $\hat{\boldsymbol{C}}$  are known

$$\hat{y}(t|\mathbf{B}, \mathbf{D}) = \hat{\mathbf{C}} \left( z\mathbf{I} - \hat{\mathbf{A}} \right)^{-1} \mathbf{B}u(t) + \mathbf{D}u(t)$$
$$\hat{y}(t) = \psi(t) \begin{bmatrix} \operatorname{Vec}(\mathbf{B}) \\ \operatorname{Vec}(\mathbf{D}) \end{bmatrix}$$

How do we get the observability matrix?

$$\mathbf{Y} = \mathcal{O}_{r}\mathbf{X} + S_{r}\mathbf{U} + \underbrace{\mathbf{V}}_{\text{Noise terms}}$$
$$\mathbf{P}_{\mathbf{U}^{T}}^{\perp} = \mathbf{I} - \mathbf{U}^{\mathsf{T}}\left(\mathbf{U}\mathbf{U}^{\mathsf{T}}\right)^{-1}\mathbf{U}$$
$$\mathbf{Y}\mathbf{P}_{\mathbf{U}^{T}}^{\perp} = \mathcal{O}_{r}\mathbf{X}\mathbf{P}_{\mathbf{U}^{T}}^{\perp} + \mathbf{V}\mathbf{P}_{\mathbf{U}^{T}}^{\perp}$$

### Subspace identification - Estimating observability matrix

How do we get rid of the noise term? Try to correlate it with another suitable matrix  $\Phi.$ 

$$\Phi = \begin{bmatrix} \phi_s(1) & \phi_s(2) & \dots & \phi_s(N) \end{bmatrix}$$

$$G = \frac{1}{N} \mathbf{Y} \mathbf{P}_{\mathbf{U}^{\mathsf{T}}}^{\perp} \Phi^{\mathsf{T}} = \mathcal{O}_{r} \frac{1}{N} \mathbf{X} \mathbf{P}_{\mathbf{U}^{\mathsf{T}}}^{\perp} \Phi^{\mathsf{T}} + \frac{1}{N} \mathbf{V} \mathbf{P}_{\mathbf{U}^{\mathsf{T}}}^{\perp} \Phi^{\mathsf{T}} = \mathcal{O}_{r} \tilde{T}_{N} + V_{N}$$

We want:

 $\lim_{N \to \infty} V_N = 0$  $\lim_{N \to \infty} \tilde{T}_N = \tilde{T}$ 

Following choice of  $\Phi$  works

$$\phi_{s}(t) = \begin{bmatrix} y(t-1) \\ \vdots \\ y(t-s_{1}) \\ u(t-1) \\ \vdots \\ \vdots \\ \mu(t-s_{2}) \end{bmatrix} \Rightarrow \quad \exists \quad \forall s \in S_{2}$$

L4C

### Spectral Filtering - Symmetric dynamics matrix

- Real eigenvalues
- Initial state is assumed to be 0
- w.lo.g A can be assumed to be diagonal
- **c**<sub>*l*</sub> be the  $l^{th}$  column of **C** and **b**<sub>*l*</sub> be the  $l^{th}$  row of **B**
- Let  $\mu(\alpha) = \left[ \alpha^{i-1}(1-\alpha) \right]$  be a T dimensional vector

$$y_t - y_{t-1} = (\mathbf{CB} - \mathbf{D})u_{t-1} + \sum_{i=1}^{T} \mathbf{C} \left( \mathbf{A}^i - \mathbf{A}^{i-1} \right) \mathbf{B}u_{t-i-1} + \mathbf{D}u_t$$
 (16)

$$= (\mathbf{C}\mathbf{B} - \mathbf{D})u_{t-1} + \sum_{i=1}^{l} \mathbf{C} \sum_{l=1}^{a} \left(\alpha_{l}^{i} - \alpha_{l}^{i-1}\right) e_{l} e_{l}^{T} \mathbf{B} u_{t-i-1} + \mathbf{D} u_{t} \qquad (17)$$

$$= (\mathbf{CB} - \mathbf{D})u_{t-1} + \sum_{l=1}^{d} \left( c_l b_l^T \mu(\alpha_l) \circledast u \right) + \mathbf{D}u_t \tag{18}$$

Spectral Filtering - Symmetric dynamics matrix

$$y_{t} - y_{t-1} = (\mathbf{CB} - \mathbf{D})u_{t-1} + \sum_{l=1}^{d} c_{l} b_{l}^{T} (\mu(\alpha_{l}) \circledast u) + \mathbf{D}u_{t}$$
(19)

Find a basis for representation of the vectors with structure  $\mu(\alpha)$ Define a matrix Z such that:

$$Z_{ij} = \int_{\alpha=0}^{1} \mu(\alpha)_{i} \mu(\alpha)_{j} d\alpha = \frac{2}{(i+j)^{3} - (i+j)}$$
(20)

Eigenvectors of Z denoted by  $\phi_{\mathit{sf},i}$ 

$$\mathbf{y}_{t} - \mathbf{y}_{t-1}$$

$$= (\mathbf{C}\mathbf{B} - \mathbf{D})u_{t-1} + \sum_{f=1}^{k} \sum_{l=1}^{d} c_{l} b_{l}^{T} \langle \mu(\alpha_{l}), \phi_{sf,f} \rangle (\phi_{sf,f} \circledast u) + \mathbf{D}u_{t}$$
(21)
(21)

### Spectral Filtering - General

Eigenvalues of **A** can be complex. According to the ARX model, if  $\beta_j$  are chosen to be the coefficients of the characteristic polynomial,

$$\sum_{i=0}^{d} \beta_{i} y_{t-i} = \sum_{j=0}^{d} \mathbf{P}_{j} u_{t-j}$$
(23)

Instead, let us choose  $\beta_j$  to be the coefficients of the polynomial with roots given by the phases of the eigenvalues of **A**. Define approximation error

$$\delta_t = \sum_{i=0}^d \beta_i y_{t-i} - \sum_{j=0}^d \mathbf{P}_j u_{t-j}$$
(24)

イロト イ部ト イヨト イヨト 二日

### Spectral Filtering - General

For  $\mathbf{a} \in \mathbb{R}^{T}$ , define  $a^{(\omega)} := (a_{j}\omega^{j})_{1 \leq j \leq T}$ ,  $a^{(\cos,\theta)} := (a_{j}\cos(j\theta))_{1 \leq j \leq T}$ ,  $a^{(\sin,\theta)} := (a_{j}\sin(j\theta))_{1 \leq j \leq T}$  $\delta_{t}$  can be well approximated using the wave filters. Let  $\omega_{l}$  be the actual phases of  $\mathbf{A}$ . Phase Quantization.

$$\delta_{t} \approx \sum_{l=1}^{d} \sum_{h=1}^{k} M_{l}'(h, :, :) \sigma_{h}^{\frac{1}{4}} \left( \phi_{sf, h}^{(\omega_{l})} \circledast u \right)$$
(25)

$$\approx \sum_{w=1}^{W} \sum_{h=1}^{k} M(w,h,:,:) \sigma_{h}^{\frac{1}{4}} \left( \phi_{sf,h}^{(e^{2\pi i \frac{W}{W}})} \circledast u \right)$$
(26)

$$\approx \sum_{w=1}^{W} \sum_{h=1}^{k} \mathcal{M}(w,h,:,:) \sigma_{h}^{\frac{1}{4}} \left( \phi_{sf,h}^{(\cos,2\pi\frac{w}{W})} \circledast u \right)$$
(27)

$$+ N(w,h,:,:)\sigma_h^{\frac{1}{4}} \left( \phi_{sf,h}^{(\sin,2\pi\frac{w}{W})} \circledast u \right)$$
(28)

60/62

# Policy Optimization

$$\min_{u_t} J = \sum_{t=1}^T c_t$$
$$x_{t+1} = f(x_t, u_t)$$

Parameterize policy as  $u_t = \pi_{ heta}(x_t)$ 

#### Policy Gradient

$$\theta_{t+1} = \theta_t - \left(\sum_{t=1}^T c_t \sum_{t'=1}^T \nabla_\theta \ln(\pi_\theta(\mathsf{x}_{t'}))\right)$$

**Natural Policy Gradient** 

$$\theta_{t+1} = \theta_t - \mathbf{G}_{\theta}^{-1} \nabla_{\theta} J$$

where  $\mathbf{G}_{\theta} = \mathbb{E}(\nabla_{\theta} \ln \pi_{\theta}(x_t) \nabla_{\theta}^{T} \ln \pi_{\theta}(x_t))$  is the fisher information matrix of  $\pi_{\theta}(x_t) = \frac{1}{61/62}$ 

### Inputs in system ID experiment



Figure: Sample input for the system identification experiment

𝔅 𝔅 62/62

æ