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Motivation for Graph neural nets

Want to capture the graph structure in learning

Convolutional nets are translation invariant

Graph neural networks needed to capture invariances specific to graphs

A - the adjacency matrix of the graph

Naive idea: Vectorize A and use a feed-forward net

PTAP for any permutation matrix P is essentially the same graph

Invariance: f (PTAP) = f (A), Equivariance:f (PTAP) = PT f (A)P
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Overview

Inference on graphs by using node adjacency information
General purpose learning model - node classification, node regression, graph
classification, edge classification ...

Taxonomy

1 Recurrent GNN
2 Convolutional GNN
3 Graph autoencoder
4 Spatio-temporal GNN

Introduced in Gori, Monfardini, and Scarselli 2005
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Applications

Athindran Ramesh Kumar (Princeton University) GNN April 20, 2021 5 / 46



6/46

Recurrent graph neural networks

Update node states by exchanging neighborhood information till equilibrium
(Scarselli, Gori, et al. 2008, Dai et al. 2018)

htv =
∑

u∈N (v)

f (ht−1
u , xu, xv , xuv ; Θ) (1)

xu - Node feature vector

htu - Node state at time t

xuv - Edge feature vector

Θ - Learnable parameters

Nodes and edges can have additional labels or indices which can optionally be
brought into the update.

Recursive connections gaining prominence outside the graph domain too
Questions - stability, restrictions on f
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Convolutional graph neural networks

Broadly divided into spectral ConvGNNs and spatial ConvGNNs

Unified by GCN (Kipf and Welling 2016) and NN4G (Micheli 2009)
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Spectral ConvGNN

Origins in graph signal processing

A - adjacency matrix, D - degree matrix, L- Laplacian

L = In − D−
1
2 AD−

1
2 (Laplacian)

L = UΛUT

H
(k)
:,j = σ

(
fk−1∑
i=1

UΘk
i,jU

TH
(k−1)
:,i

)

H(k−1) ∈ Rn×fk−1 , U ∈ Rn×n

fk - No. of channels at layer k

Θk
i,j ∈ Rn×n

Compute eigenvectors, fixed graph, 1D features.
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Spatial ConvGNN

hkv = f

W (k)T xv +
k−1∑
i=1

∑
u∈N(v)

Θ(k)T h(k−1)
u


Scores of architectures

Flexible, efficient, general

Graph Convolutional Network (GCN) - Kipf and Welling 2016

Spectral ConvGNN - First order approximation

H = X ∗G gΘ = f ((In − D−
1
2 AD−

1
2 )XΘ)

Equivalent to spatial ConvGNN

hv = f

ΘT

 ∑
u∈N(v)∪v

Āv ,uxu


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Graph Convolutional Network (GCN)

First-order approximation

X ∗G gΘ ≈ θ
′

0X + θ
′

1(L− In)X = θ
′

0X − θ
′

1D
− 1

2 AD−
1
2 X

Constrain θ1 = −θ0

X ∗G gΘ ≈ θ
′

0(In + D−
1
2 AD−

1
2 )X

This is an unstable operator. Re-normalize with Ā = A + In and corresponding
degree matrix D̄

Z = D̄−
1
2 ĀD̄−

1
2 XΘ
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Other networks

Graph Autoencoders - Unsupervised learning
(Cao, Lu, and Q. Xu 2016; Wang, Cui, and Zhu 2016)

Two major functions:

1 Network/node embedding - Low-level representation used to reconstruct
graph properties

2 Graph generation - Generative model to generate graphs from embedding

Application : Molecular drug discovery

Spatiotemporal networks (J. Zhang et al. 2018; Li et al. 2017)

Real-world applications with dynamic graph structure and features

Opinions in a social network, road traffic

Optional convolution over time with tensor input
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Universal Approximation for Node Regression

Graph neural networks are universal approximators - Scarselli, Gori, et al. 2008

G an undirected graph, n a particular node

ne[n] neighbors of node, co[n] edges of node, hn - node state, xn - node input

GNN mapping ψ(G , n) ∈ Rm

L = {Gi , nij , tij} - set of graphs with nodes and targets for each node

Node regression - minimize squared error over all targets and predictions

hn = fw (xn, xco[n], hne[n], xne[n]) (2)

on = gw (hn, xn) (3)

Entire graph:

h = Fw (h, x)

o = Gw (h, x)
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Universal Approximation for Node Regression

Unfolding equivalence

Two nodes are unfolding equivalent if their unfolding trees are the same
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Universal Approximation - Key Results

D - space of graphs and nodes in the graph
Functions preserving unfolding equivalence - F(D)

Theorem

A function ` belongs to F(D) if and only if there exists κ defined on trees such
that `(G , n) = κ(Tn) for any node n of the domain D

Define a probability measure on D

Theorem

For any measurable function τ ∈ F(D) that preserves unfolding equivalence, any
norm ‖‖ on Rm, any probability measure P on D, and any reals ε > 0, 0 < µ < 1,
0 < λ < 1, there exists two continuosly differentiable functions f and g such that
the global transition function is a contraction map with a contracting constant µ,
the stable state is uniformly bounded and the corresponding map ψ satisfies:

P(‖τ(G , n)− ψ(G , n)‖ ≥ ε) ≤ 1− λ
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Universal Approximation - Proof Technique

Divide the space D into graphs with similar structure and further have a
fine-grained division into hypercubes on the space of target of each node in
the graph

Pick one graph-target from each hypercube as a representative set to
approximate. Can show that approximating this set is sufficient to
approximate the entire space

There exists an injective map from the space of unfolding trees to an integer
number. Choose f to be this injective map

Show that GNN can implement this map while ensuring stability

Choose g = κ(f −1(·))
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Graph Classification

Specific problem of differentiation graph structures K. Xu et al. 2018

Multiset - A collection of elements where order is not important but I keep
track of the count of each element

Weisfeiler-Lehman test Leman and Weisfeiler 1968

Initialize C0,n = MultiSet({1}) for all nodes

Iteratively set Ct,n = Compress
(
∪m∈Ne[n](Ct−1,n ∪ Ct−1,m)

)
Compression has to be consistent and injective

Can optionally iterate until convergence

After k iterations, if the node labels differ, graphs are not isomorphic

Otherwise, inconclusive

Athindran Ramesh Kumar (Princeton University) GNN April 20, 2021 18 / 46



19/46

Graph Classification

Weisfeiler-Lehman test

Distinguishing graph structure - unknown whether its P or NP.
Are graph neural networks as powerful as Weisfeiler-Lehman test?
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Distinguishing graph structure

Convolutional architecture under consideration:

akv = AGGREGATEk
(
{hk−1

u : u ∈ Ne [v ]}
)
, hkv = COMBINEk

(
hk−1
v , akv

)
Some heuristic choices:

1 GraphSAGE (Hamilton, Ying, and Leskovec 2017):

akv = MAX
(
{ReLU

(
W · hk−1

u

)
, u ∈ Ne [v ]}

)
, hkv = W · [hk−1

v , akv ]

2 GCN (Kipf and Welling 2016):

hkv = ReLU
(
W .MEAN{hk−1

u ,∀u ∈ Ne [v ] ∪ v}
)

For graph representation,

hG = READOUT({hKv |v ∈ G})
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Distinguishing graph structure

Definition
A multiset is a generalized concept of a set that allows multiple instances for its
elements. Multiset is X = (S ,m) where S is the underlying set that is formed
from its distinct elements and m : S → N≥1 gives the multiplicity of its elements.

Represent features on each node as countable sets

Maximal unfolding tree of each node represented by a multi-set of features

Key idea: GNN is maximally powerful if the mapping from the neighborhood
multiset to the representation is injective

Key results:

None of the graph neural networks here are more powerful than WL test

GNN however learns an embedding unlike WL

With a sufficient number of layers, GNN as powerful if the AGGREGATE,
COMBINE and READOUT functions are injective on the domain of multisets
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Distinguishing graph structure

Both graphSAGE and GCN flawed in their architecture
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Distinguishing graph structure

Lemma
Assume X is countable. There exists a function f : X → Rn so that
h(X ) =

∑
x∈X f (x) is unique for each multiset X ⊂ X of bounded size. Moreover,

any multiset function g can be decomposed as φ
(∑

x∈X f (x)
)

for some φ.

Simple observation gives rise to GIN (Graph isomorphism network):

hkv = MLP

(1 + εk
)
ḣk−1
v +

∑
u∈N (v)

hk−1
u


Some empirical results validate the theoretical findings

Moral of the story: Choose the structure that is right for the task at hand. If
the downstream task wants to differentiate graph structure, GIN better than GCN
and graphSAGE
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Graph isomorphism testing and approximation

Notation and Definitions

Graph G represented as X n×n. X - compact set. n number of nodes. The
diagonal elements are node labels and off-diagonal elements are edge weights

Definition

Let C be a collection of permutation-invariant functions from X n×n → R. We say
C is GIso-discriminating if for all non-isomorphic G1,G2 ∈ Cn×n, there exists a
function h ∈ C such that h(G1) 6= h(G2)

Definition

Let C be a collection of permutation-invariant functions from X n×n → R. We say
C is universally approximating if for all permutation-invariant function f from
X n×n → R, and for all ε > 0, there exists hf ,ε ∈ C such that
‖f − hf ,ε‖∞ = supG∈Xn×n

|f (G )− hf ,ε(G )| < ε
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Graph isomorphism testing and approximation

Theorem
If C is universally approximating, then it is also GIso-discriminating

Proof idea: If the function class is universally approximating, then it can learn a
function that indicates whether the graph belongs to a particular equivalence class
(graphs with same isomorphism)

Theorem

If C, a collection of continuous permutation-invariant functions from X n×n → R,
is GIso-discriminating, then C+3 is universally approximating.

Proof idea: If a function class is isomorphism discriminating, then adding three
more layers to the function class is sufficient for universal approximation. First
layer, zero out all graphs with different isomorphism. Second layer, make an
indicator function on each equivalence class. Third layer, map the required
function. Note that the input space is assumed to be finite. Can extend to
continuous space too using measure theoretic notions.
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Learning graph moments

A - adjacency matrix of graph G

n - number of nodes in graph G

Mp(A) =

p∏
q=1

(A ·Wq + Bq)

is pth order graph moment with Wq,Bq being n × n matrices. For node
permutation invariance,

W ,B = cI , or W ,B = c11T

Can encode topological properties of the graph e.g degree, paths of given length.
Provides information about the graph generation process

Learn a functional approximator: F : A→ Mp(A)
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GCN’s vs feedforward networks

Class of GCNs considered here is more general. A single layer:

F (A, x) = σ(f (A) · x ·W + b)

where xi is the attribute of node i

Encompasses graphSAGE (Hamilton, Ying, and Leskovec 2017) and GCN (Kipf
and Welling 2016) considered before

Fully connected networks vectorize the adjacency matrix so clearly inferior.
Formally:

Theorem

A fully connected network with one hidden layer requires n > O(C 2
f ) ≈ O(p2N2q)

number of neurons in the best case with 1 ≤ q ≤ 2 to learn a graph moment of
order p for graphs with N nodes. It also needs S > O(nd) ≈ O(p2N2q+2) number
of samples to make the learning tractable
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GCN’s vs feedforward networks

Theorem
With the number of layers n greater or equal to the order p of a graph moment
Mp(A), graph convolutional networks with residual connections can learn a graph
moment Mp with O(p) number of neurons, independent of the size of the graph.

With less than p layers, order p graph moment cannot be learnt by a GCN
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Linear invariant and equivariant layers

Maron, Ben-Hamu, Shamir, et al. 2018

Adjacency matrix: Rn×n

Generalize to hyper-edges: form a set of k nodes, attribute a weight to
hyper-edge

Resulting tensor Rnk

Invariance: f (PTAP) = f (A) for a permutation matrix P

Equivariance: f (PTAP) = PT f (A)P for a permutation matrix P

Let L : Rnk → R be a linear operator. Under what conditions will L be
invariant?

Let L : Rnk → Rnk be a linear operator. Under what conditions will L be
equivariant?

Athindran Ramesh Kumar (Princeton University) GNN April 20, 2021 32 / 46



33/46

Linear invariant and equivariant layers

Invariance:
For L : Rn×n → R, matrix L ∈ R1×n2

. For permutation matrix P,
Lvec(PTAP) = Lvec(A)
Use the property, vec(XAY ) = Y T ⊗ Xvec(A)
Reduced to: P ⊗ Pvec(L) = vec(L)
Equivariance:
For L : Rn×n → Rn×n, matrix L ∈ Rn2×n2

[Lvec(PTAP)] = PT [Lvec(A)]P
Reduced to: P ⊗ P ⊗ P ⊗ Pvec(L) = vec(L)

For general case:

invariant L :P⊗kvec(L) = vec(L)

equivariant L :P⊗2kvec(L) = vec(L)
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Solving the fixed point equations

P⊗`vec(X ) = vec(Q ∗ X )

for a permutation matrix Q.

Define a relation on the index space of tensors in Rn`

For multi-indices a, b ∈ [n]`, we set a ∼ b if ai = aj implies bi = bj

For n = 2, ` = 2, example, two equivalence classes {(1, 1), (2, 2)} and
{(1, 2), (2, 1)}

For each equivalence class γ ∈ [n]`/ ∼, we define an order-` tensor Bγ ∈ Rn`

Bγa =

{
1 a ∈ γ
0 otherwise

For n = 2, l = 2, example,

Bγ1 =

[
1 0
0 1

]
,Bγ2 =

[
0 1
1 0

]
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35/46

Solving the fixed point equations

The vectors Bγ form a basis for the solution set of the fixed point equation

In other words, any linear operator L has to have equal entries on the
equivalence classes

Theorem

The space of invariant (equivariant) linear layers Rnk → R(Rnk → Rnk ) is of
dimension b(k)(b(2k)) with basis elements Bγ , where γ are equivalence classes in
[n]k/ ∼ ([n]2k/ ∼).

The results can be extended to linear layer with biases, vector features and
mixed-order layers.
b(k) - k th bell number, count the number of possible partitions of a set with k
elements

G-invariant network - Use linear equivariant and invariant layers with
element-wise activation

How expressive are these networks?
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Universality of Invariant Networks

Maron, Fetaya, et al. 2019

Theorem
Let f : Rn → R be a continuous G-invariant function for some G ≤ Sn, and
K ⊂ Rn a compact set.There exists a G-invariant network that approximates f to
an arbitrary precision.

Sn- symmetric group (Bijection from {1 . . . n} to itself)
Vague statement... The constructed network has at least 3 equivariant layers

Bad news, the tensor order k scales as n(n−1)
2 - Reason: there exists graphs which

need higher-order information to be able to differentiate between them. Very
difficult to keep up with the expanding memory and compute requirements on
large-scale graphs
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Back to isomorphism testing...

We saw first-order graph neural networks are as strong as Weisfeiler-Lehman
for structure differentiation

Is there any benefit in including k th order hyper-edges? Maron, Ben-Hamu,
Serviansky, et al. 2019

k th Weisfeiler-Lehman test

G = (V ,E , d) be a colored graph where |V | = n and d : V → Σ where Σ is
set of colors

k-WL constructs a coloring for k-tuple of vertices: c : V k → Σ

Tensor C ∈ Rnk represents color of all k-tuples

Initial coloring should be consistent.. isomorphic k-tuples get same color

I = (i1, i2, . . . , ik) (4)

Nj(I) = {(i1, . . . , ij−1, i
′
, ij+1, . . . , ik)|i

′
∈ [n]} (5)

C `I = enc
(
C `−1

I ,
(
{C `−1

J |J ∈ Nj(I )}
∣∣∣j ∈ [k]

))
(6)
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Power sum symmetric polynomials

For each k ≥ 2 there is a pair of non-isomorphic graphs distinguishable by
(k + 1)WL but not by (k)WL.
k-order networks

Represent colors as vectors.. Tensor C ∈ Rnk×a

Multiset representation X ∈ Rn×a that is invariant to permutations of nodes
(rows)

Let α = (α1, α1, . . . , αa) ∈ [n]a be a multi-index and for y ∈ Ra, set

yα = yα1
1 · y

α2
2 . . . yαa

a

Represent X = [x1, x2, . . . xn]T

pα(X ) =
n∑

i=1

xαi

For
∑a

j=1 αj ≤ n, the set pα can be used to compose the polynomials which
respect permutation symmetry
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k-order Graph Networks

Ring of multi-symmetric polynomials q(X ) = q(g · X ) can be represented as
r(u(X )) where:

u(x) = (pα(X )
∣∣∣|α| ≤ n)

with arbitrary polynomial r

Proposition: u(X ) is an unique representation of X

Key idea: u(X ) can be expressed using linear equivariant layers with a MLP
to approximate the polynomials

Theorem

Given two graphs G1 = (V1,E1, d1),G2 = (V2,E2, d2) that can be distinguished by
the k-WL graph isomorphism test, there exists a k-order network F so that
F (G1) 6= F (G2). On the other direction for every two isomorphic graphs G1 ∼ G2

and k-order network F , F (G1) = F (G2).
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Traditional generalization theory

Targets Y , inputs X from distribution D, predictions Ŷ (X )

Loss function L(Y , Ŷ (X ))

Typical generalization bound: w.p 1− δ

EX∼D[L(Y , Ŷ (X ))] =
1

m

m∑
i=1

L(Y , Ŷ (Xi )) +4(m, δ, χ) (7)

4 ∝
√

1

m

4 ∝χ (Some measure of model complexity)

Popular complexity measures: VC-dimension, Rademacher complexity.
Another approach to generalization called PAC-Bayes
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Generalization for graph networks

VC-dimension (Scarselli, Tsoi, and Hagenbuchner 2018)

Rademacher (Garg, Jegelka, and Jaakkola 2020)

Algorithmic stability (Verma and Z.-L. Zhang 2019)

PAC-Bayes bounds (Liao, Urtasun, and Zemel 2020))

Figure: PAC-Bayes bounds

Benign over-fitting largely not studied

Athindran Ramesh Kumar (Princeton University) GNN April 20, 2021 42 / 46



43/46

Conclusion

Graph neural networks capture structure and invariances specific to graphs

Universal approximation of some class of invariant functions

Relationship between isomorphism testing and universal approximation

Including higher order tensors leads to increased power at the expense of
computation and memory
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