DiffLoop: Tuning PID Controllers by Differentiating Through the Feedback Loop

Athindran Ramesh Kumar and Peter J. Ramadge

Princeton University CISS 2021 arkumar@princeton.edu

February 25, 2021

イロト イ部ト イヨト イヨト 二日

1 PID controllers and wind-up compensation

2 Related Work

3 Disturbance Feedback for Anti-Windup Compensation

4 Numerical Simulations

5 Conclusions and Future Work

*ロト *部ト *注ト *注ト - 注

PID controllers and wind-up compensation

▲□▶▲□▶▲□▶▲□▶ □ のへで

PID tuning with anti-windup

- PID controllers¹ popular in industrial control, robotics
- Tuning PID parameters crucial
- Major source of non-linearity actuator saturation
- Anti-windup for actuator saturation back-calculation

Our work

- Focus on model-based tuning both system and actuator models
- Key idea solve the non-convex optimization with gradient descent
- Enabled by automatic differentiation

¹Åström and Hägglund 1995.

Outline of our approach

- **1** Run simulation with current parameters
- 2 Compute cost function
- 3 Propagate gradients back through the models of actuator and system
- 4 Update parameters with gradient update
- 5 Repeat until convergence

AutoDiff tool - $PyTorch^2$ Computation easily done in a modern CPU

²Paszke et al. 2017.

Related Work

Athindran Ramesh Kumar and Peter J. Ramadge DiffLoop

Prior Work

Machine learning and PID tuning

- Black-box optimization Genetic algorithm³, Particle swarm optimization⁴
- Reinforcement learning⁵

Differentiable models

- Differentiate through to update model parameters or train controllers
- Success in various domains⁶

Ours - Model-based PID tuning with differentiable model

Athindran Ramesh Kumar and Peter J. Ramadge

³Mitsukura, Yamamoto, and Kaneda 1997; Herrero et al. 2002.

⁴Chen 2007.

⁵Doerr et al. 2017; Lawrence et al. 2020; Shi et al. 2018.

⁶Chang et al. 2016; Degrave, Hermans, Dambre, et al. 2019; Avila Belbute-Peres et al. 2018. 🖹 🗦 💈 🔗 ९ (* 7/2)

DiffLoop

Theoretical Standpoints

Non-convex optimization in control

- LQR, H^{∞} controller design policy gradient and gradient descent converge to global optima⁷
- Output feedback controller design less studied

Disturbance-feedback policies

- Introduced in online learning approach to control⁸
- Tight regret bounds

⁷Fazel et al. 2018; Zhang, Hu, and Basar 2020.

⁸Agarwal et al. 2019; Hazan, Kakade, and Singh 2020; Simchowitz, Singh, and Hazan 2020. E E S Q (* 8/2)

Disturbance Feedback for Anti-Windup Compensation

(日)

System Setup

Assume the system to be controlled is stabilizable and detectable

$$x_{t+1} = Ax_t + Bu_t + w_t \tag{1}$$

$$y_t = C x_t + e_t. \tag{2}$$

To model actuator saturation, modify (1) to:

$$x_{t+1} = Ax_t + B\mathsf{sat}(u_t) + w_t \tag{3}$$

 $\mathsf{Back}\mathsf{-calculation}$ - The errors due to actuator saturation integrated and fed back^9

Back-calculation method

 r_t - the reference signal to be tracked P_t , I_t , D_t - **proportional**, **integral** and **derivative** components

$$P_t = k_p \left(r_t - y_t \right) \tag{4}$$

$$D_t = \alpha D_{t-1} + k_d \Delta y_t \tag{5}$$

$$I_{t+1} = I_t + k_i (r_t - y_t) + b(sat(v_t) - v_t)$$
(6)

$$v_t = P_t + I_t + D_t \tag{7}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$sat(v_t) = clamp(v_t, u_{low}, u_{high}).$$
(8)

 Δ - difference operator, α - filter parameter k_p , k_i , k_d , b - proportional, integral, derivative, back-calculation gains

Disturbance feedback and back-calculation

Start from linear state-space model with PID control Append integral, derivative terms to state

$$i_{t+1} = \sum_{t'=1}^{t+1} x_{t'} = i_t + x_t \tag{9}$$

$$d_{t+1} = x_t - x_{t-1}. (10)$$

< □ > < □ > < □ > < Ξ > < Ξ > Ξ - のQで 12/25

Augmented state $X_t = [x_t; x_{t-1}; i_t]$

$$\begin{bmatrix} x_{t+1} \\ x_t \\ i_{t+1} \end{bmatrix} = \begin{bmatrix} A & 0 & 0 \\ I & 0 & 0 \\ I & 0 & I \end{bmatrix} \begin{bmatrix} x_t \\ x_{t-1} \\ i_t \end{bmatrix} + \begin{bmatrix} B \\ 0 \\ 0 \end{bmatrix} u_t + w_t$$
(11)

$$Y_t = \begin{bmatrix} C & 0 & 0 \\ 0 & 0 & C \\ C & -C & 0 \end{bmatrix} \begin{bmatrix} x_t \\ x_{t-1} \\ i_t \end{bmatrix} + e_t.$$
(12)

PID controller design

Write equations more concisely as:

$$X_{t+1} = A' X_t + B' u_t + w_t$$
(13)
$$Y_t = C' X_t + e_t,$$
(14)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where w_t and e_t defined appropriately

- Augmented system stabilizable, detectable
- PID controllers ($\alpha = 0$) expressed as $u_t = -KY_t$ for (13), (14)
- PID tuning output feedback controller design (Open problem)

Actuator saturation as a disturbance

 $w_t^a \triangleq B'(\operatorname{sat}(u_t) - u_t)$ - denote the saturation error Treat the saturation error as a disturbance:

$$X_{t+1} = A' X_t + B' \operatorname{sat}(u_t) + w_t$$
 (15)

$$= A' X_t + B' u_t + w_t^a + w_t.$$
 (16)

Adversarial disturbances in online learning - use disturbance feedback¹⁰:

$$u = -KX_t - \sum_{l=1}^{h} K_d^{[l]} w_{t-l}.$$
 (17)

Key Idea - if *h* is length of the simulation horizon and $K_d^{[I]} = K_d$ for all *l*, reduces to the **back-calculation method**

^{10&}lt;sub>Agarwal</sub> et al. 2019. イロトイラトイラトイラト そうへで 14/25 Athindran Ramesh Kumar and Peter J. Ramadge DiffLoop

Disturbance feedback in episodic learning

Our work - focus on an episodic setting. Introduce disturbance dynamics w_t^a :

$$w_t^a = \sum_{i=1}^h M^{[i]} w_{t-i}^a.$$
 (18)

Augment the state further

$$Z_t = [X_t; w_t^a; w_{t-1}^a; w_{t-2}^a \dots; w_{t-h}^a].$$

Model disturbance to obtain disturbance feedback policies

$$Z_{t+1} = \begin{bmatrix} A' & I & 0 & 0 \\ 0 & M^{[1]} & M^{[2:h-1]} & M^{[h]} \\ 0 & I & I & 0 \end{bmatrix} Z_t + \begin{bmatrix} B' \\ 0 \\ 0 \end{bmatrix} u_t + w_t'$$

$$Y_t^z = \begin{bmatrix} C' & 0 \\ 0 & I \end{bmatrix} Z_t + e_t'$$

DiffLoop

Optimization for controller tuning

The class of output-feedback controllers $u_t = -KY_t^z$:

$$u_{t} = -K_{c}Y_{t} - K_{d}'w_{t:t-h}^{a}$$

= $-K_{c}Y_{t} - K_{d}' \begin{bmatrix} M^{[1:h]}; & I \end{bmatrix} w_{t-1:t-h}^{a}$
= $-K_{c}Y_{t} - K_{d}w_{t-1:t-h}^{a}.$

Encompasses disturbance-feedback and the back-calculation method Tune K_c and K_d , gradient descent with:

$$\min_{K_c,K_d} \sum_{t=1}^T y_t^T Q y_t + u_t^T R u_t.$$
(19)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Numerical Simulations

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Athindran Ramesh Kumar and Peter J. Ramadge DiffLoop

Simulation Setup

Run simulations on linear systems with saturation

	Plant	Actuator	Step	Initial feedback
	Fidil	limits	reference	gains
1	$P(s) = \frac{2e^{-0.02s}}{s - 0.995}$	±3.3	±4	$k_{ m p} = 4, \; k_i = 10, \ b = 0.5$
2	$P(s) = \frac{1}{(s+0.1)(s-0.1)}$	±3.0	±2.9	$k_p = 20, \ k_i = 2, \ k_d = 5, \ b = 1$
3	$\frac{P(s) = \frac{(s+0.5)(s+0.3)}{(s+0.1)(s+0.2)(s+0.4)(s+0.6)}$	±4.0	±3	$k_p = 20, \ k_i = 8, \ k_d = 10, \ b = 0.2$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Simulation setup

- Convert the continuous-time system into its discrete-time counterpart
- Generate 30 random reference signals 20 for training, 10 for testing

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ へ ○ 19/25

Benchmark four controllers:

- Controller 1 Initial PID controller
- Controller 2 Initial PID controller with back-calculation
- Controller 3 Optimized PID+back-calculation
- Controller 4 Dynamic neural network controller

System 1 -
$$P(s) = \frac{2e^{-0.02s}}{s - 0.995}$$

Figure: Performance of the four controllers on a test reference for system 1.

୬**୯**୯ 20/25

System 1

Squared error cost of the four controllers on system 1

Method	Training cost	Test cost
Initial PI	304.4 ± 432.3	349.0 ± 503.3
Initial PI with	178.2 ± 153.0	189.0 ± 164.8
backcalculation	170.2 ± 100.0	
PI+backcalculation	110 2 + 79 8	114.7 ± 82.3
optimized	110.2 ± 15.0	
Neural Net optimized	109.5 ± 79.9	114.0 ± 82.2

Optimized controllers dont show wind-up transients

System 2-
$$P(s) = \frac{1}{(s+0.1)(s-0.1)}$$

Figure: (a)Output of the four controllers on a step input for system 2. (b) Variation of the feedback gains with time for the Dynamic PID controller.

<ロト <部ト < 注ト < 注ト = 注

na C 22/25

System 3 -
$$P(s) = \frac{(s+0.5)(s+0.3)}{(s+0.1)(s+0.2)(s+0.4)(s+0.6)}$$

Figure: (a)Output of the four controllers on a step input for system 3. (b) Variation of the feedback gains with time for the Dynamic PID controller.

イロト イポト イモト イモト 二日

Conclusions and Future Work

Athindran Ramesh Kumar and Peter J. Ramadge DiffLoop

Summary

- Tuning PID using AutoDiff simple and effective
- Relationship between disturbance feedback and back-calculation

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ⁰ 25/25

PID tuning as output feedback controller design

Future work

- Theoretical convergence properties
- PID tuning for non-linear robotics