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Motivation - Conservatism based on confidence

Conservatism in the face of uncertainty

I-[ARNTU m Start with a conservative controller

m Transition to a aggressive controller -
DRlV[ based on current model uncertainty

m Will a convex combination of
controllers work? Agarwal et al.
2019; Singh et al. 1994

m Tune the weights - devise a scheme

How do we learn to drive?
Play it safe until we under-
stand how the car behaves.
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CVM control - Learning to switch Method

Local improvement analysis

Problem Setup
We assume linear system with state measurable

Xe+1 = Aexe + Bruy

] Only estimates AAt, ét W|th At = AAt + AAI’ and Bt = ét + ABI’
m Have state-feedback controllers Ki, K>

m One of them will aggressively focus on tracking the reference
excitation, other has higher stability margin and robustness

m Key problem: What does it mean to convex combine Ky, K5?
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Convex combination of state feedback controllers
Bad news

m Spectral radius non-convex non-smooth

m Stability not guaranteed

Good news - still a lot of structure in the problem for LTI-SISO systems

Kz =akK; + (1 - a)Ks
L3(iw) = Ks3(iwl — A)"'B
=ali+(1-a)ls (1)
p3(z) = det(zl — A) + Ksadj(z/ — A)B
=api(2) + (1 - a)pa(2)

—am(2) (1422 )

a pi(z)
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Root Locus and Nyquist Plot
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Notation
f: R™" 3 R is twice differentiable at M € R"*"
Gradient V(M) of f such that Df (M)[H] = (Vf(M), H)

Derivative of eigenvalue

A1 -nonrepeated non-zero maximal eigenvalue of M with Mu; = Ajuy
v - eigenvector of M* for eigenvalue \;.

Geometric multiplicity of A\; one

-> p(M) = |A1(M)| infinitely differentiable:

Vl* HU1

DA (M)[H] = (3)

vy ug

Our approach to ensure stability - use gradients of the spectral radius

1Ma:gnu: 1985.
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m Our method - Use gradients to tune spectral radius to desired py
m A;, B; be the system at time t
| Kt = (1 — Oét)K]_ + O[tKQ

m Estimates /A\t, ét with A ¢, A the additive errors in the estimates

VK, UK eigenvectors of (f\t — éth,l)T and A, — B,K,_1 for the
eigenvalue with the maximum radius

pe ~ [M(Ar — BiKi1) + Da(M)[Dac] + Ds(M)[ L] + (Aat) |

A _ B LA H A g K
%‘Al(At—Bth_1)+VK AtUk Ve Bt Ri—1UK

H H
VK Uk VK [7)%¢

VH B (Ky — Ky)uk
K ef(vj 1) (at _ atf]_) |
K UK

(at - Oét—l)
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Therefore,

Pr < pr—1+ SKHAAtH2 + 5K||Kt—1||2||ABt||2 + Sa(Oét — Olt—l) (4)

H N HRA
B:(K2—K:
where s = el . — Re (S B0 taux)
vKuK|| [Ak| Vi Uk

Let || Aaell2 < dar and || Aptll2 < 05t

m Compute an aggressive controller K1 and a robust controller K> at a
lower frequency

m At each time perform the following update (n; - learning rate):
pc = pr—1 + Skdar + sk||Ke—1]|0B:

oy = ar—1 + NS (pd — pe)
Kt:(l_at)x K]_"—OétXKQ

—~ —~
~N o O
~— ~— ~—
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Theorem

Assume that the model estimates and the generated controllers are
bounded, max{||Kz||, |Ki||} < ck, max{||B:||, ||Btll} < cb. Then,
If pg < pc and dar < €,, 0g: < €p and n; < ¢ then p; < p;_1. Also,
ifsa #0, pr < pe—1.
If pg > pec and dar < €a, 0gr < €p and ny < ¢ then p; > py_1. Also,
ifSa ;é 0, Pt > Pr—1-

Proof idea: Make assumptions to ensure differentiability since spectral
radius is not convex. Use the second order taylor expansion and bound
the second derivative.

Meaning of the theorem: If the algorithm is not stuck in a local
minima, it will move in the desired direction.
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Experiment 1 - 3 dimensional SISO LTV system. Artificially vary the
estimates from some initial offset to the true values
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Experiment 1

Experiment 1 - 3 dimensional SISO LTV system. Artificially vary the
estimates from some initial offset to the true values
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CVM control - Numerical Study Spring-beam system

Spring-beam - Nonlinear simulation with Euler’'s approximation.
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Refer paper for more experiments on MIMO systems
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Conclusions

Major takeaways:

m Adaptive control algorithm to transition from conservative to
aggressive control

m Approximate linear models - require robust conservative controller
m Usefulness of method - use machine learning to refine system model
m Use model certainty to tune controller

m Can mimic human conservatism in controllers
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